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STABILITY AND BIFURCATION ANALYSIS IN A DISCRETE-TIME

PREDATOR-PREY DYNAMICS MODEL WITH FRACTIONAL ORDER

MOUSTAFA EL-SHAHED1, A.M. AHMED2, IBRAHIM M. E. ABDELSTAR2,3

Abstract. In this study, the dynamical behavior of a discrete predator–prey dynamics model

of fractional-order is discussed. The existence conditions of the locally asymptotic stability and

bifurcation theory of the equilibrium points are analyzed. The numerical simulations are carried

out to illustrate the dynamical behaviors of the model such as flip bifurcation, Hopf bifurcation

and chaos phenomenon. The results of numerical simulations verify our theoretical analysis.
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1. Introduction

A Predator is an animal that kills another to get food. The predator is usually larger and

less number of prey and it must possess the ability to kill. Currently, there was a big interest

in the dynamic characteristics of the predator-prey models. For example, Huang et al [20] has

been investigating the issue of control of the bifurcation of the novel asymmetrical fractures

predator-prey system with time delay, Xu [25] has studied the dynamics of a diffusive prey-

predator model with general functional response and stage-structured for the prey. Ghaziani et

al [16] have introduced the fractional order Leslie-Gower prey-predator model, which describes

the interaction between two populations of prey and predator. In [20] Hu et al have investigated

a discrete-time predator-prey system of Holling and Leslie type with a constant yield prey

harvesting obtained from the forward Euler scheme.

The objectives of this paper are to study the dynamical behaviors of the discrete-time gener-

alist predator–prey dynamics model with fractional order which was considered in [26]:

dx
dt = x(1− x)− x2y

1+ax2 ,
dy
dt = bx2y

1+ax2 + cy
1+dy − ey.

(1)

Where a, b, c, d and e are constant. Sufficient conditions for the existence of the solutions of the

discrete-time model (1) with fractional-order is investigated. The equilibrium points and their

asymptotic stability are discussed. Also, the conditions for the existence of flip bifurcation is

derived. The necessary conditions for this system to exhibit chaotic dynamics are also derived.
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In recent decades, the fractional calculus and Fractional differential equations have attracted

much attention and increasing interest due to their potential applications in science and engi-

neering [24]. In this paper, we consider the fractional order model for generalist predator–prey

dynamics model.

The purpose of this paper is to study the dynamical behaviors of the discrete-time generalist

predator–prey dynamics model with fractional-order for the model (1). Sufficient conditions for

the existence of the solutions of the discrete-time model (1) with fractional-order is investigated.

The equilibrium points and their asymptotic stability are discussed. Also, the conditions for

the existence of flip bifurcation is derived. The necessary conditions for this system to exhibit

chaotic dynamics are also derived.

2. Fractional calculus

A great deal of research has been conducted on mathematical models based on fractional-

order differential equations. A property of these fractional models is their nonlocal property

which does not exist in integer order differential equations. Nonlocal property means that

the next state of a model depends not only upon its current state, but also upon all of its

historical status as the case in epidemics. Fractional-order differential equations can be used to

model phenomena which cannot be adequately modeled by integer-order differential equations

[17, 23, 24]. On the other hand, discrete-time models are more accurate to describe epidemics

than the continuous-time models because statistical data on epidemics is collected in discrete

time. Additional advantage includes simplicity of its simulation, the fact that is easier to adjust

system’s parameters from statistical data in discrete-time models than in continuous-time ones

as well as the fact that discrete-time models may exhibit a richer dynamic behavior than its

continuous-time counterparts. There are several definitions of fractional derivatives [2, 8]. One

of the most common definition is the Caputo definition [9]. This definition is often used in real

applications.

Definition 2.1. The fractional integral of order β ∈ R+ of the function f(t); t > 0; is defined

by

Iβf(t) =

∫ t

0

(t− s)β−1

Γ (β)
f(s)ds,

and the fractional derivative of order α ∈ (n− 1, n) of f(t); t > 0; is defined by

Dα
t f(t) = In−αDn

t f
(n)(t), α > 0,

where, f (n) represents the n−order derivative of f(t); n = [α] is the value of α rounded up to

the nearest integer, Iβ is the β−order Riemann-Liouville integral operator and Γ (.) is Euler’s

Gamma function. The operator D is called the ” α−order Caputo differential operator”.

Although the Riemann–Liouville fractional derivative weakens the conditions on the function

f(t), Caputo’s fractional derivatives are more widely used in initial values problems of differential

equations and have stronger physical interpretations.

The fractional-order predator-prey dynamics model can be written as follows:[15]

Dα
t x = x(1− x)− x2y

1+ax2 ,

Dα
t y = bx2y

1+ax2 + cy
1+dy − ey.

(2)

where, Dα
t represents the Caputo fractional derivative, t > 0; and α ∈ (0, 1] .



M. EL-SHAHED et al: STABILITY ANALYSIS IN A DISCRETE-TIME PREDATOR-PREY... 85

3. Discretization process

In [6, 7, 13, 14] a discretization method was introduced to discretize fractional order differential

equations. We are interested in applying the discretizations method to the fractional predator–

prey dynamics model (2). The discretization of system (2) with piecewise constant arguments

is given as

Dα
t x = x

([
t
h

]
h
) [

1− x
([

t
h

]
h
)]

− x2([ th ]h)y([
t
h ]h)

1+ax2([ th ]h)
,

Dα
t y =

bx2([ th ]h)y([
t
h ]h)

1+ax2([ th ]h)
+

cy([ th ]h)
1+dy([ th ]h)

− ey
([

t
h

]
h
)
.

(3)

First, let t satisfies the inequality 0 ≤ t < h; which implies that 0 ≤ t
h < 1. Then, we get

Dα
t x1 = x0 [1− x0]−

x2
0y0

1+ax2
0
,

Dα
t y1 =

bx2
0y0

1+ax2
0
+ cy0

1+dy0
− ey0.

(4)

The solution of (4) reduces to

x1 (t) = x0 + Jα
[
x0 (1− x0)−

x2
0y0

1+ax2
0

]
,

y1 (t) = y0 + Jα
[

bx2
0y0

1+ax2
0
+ cy0

1+dy0
− ey0

]
.

(5)

where Jα = hα

Γ(1+α) . Second, let t ∈ [h, 2h), which makes 1 ≤ t
h < 2. Thus, we obtain

Dα
t x2 = x1 (1− x1)−

x2
1y1

1+ax2
1
,

Dα
t y2 =

bx2
1y1

1+ax2
1
+ cy1

1+dy1
− ey1,

(6)

which has the following solution:

x2 (t) = x1 +
(t−h)α

Γ(1+α)

[
x1 (1− x1)−

x2
1y1

1+ax2
1

]
,

y2 (t) = y1 +
(t−h)α

Γ(1+α)

[
bx2

1y1
1+ax2

1
+ cy1

1+dy1
− ey1

]
.

(7)

Repeating the discretization process n times yields

xn+1 (t) = xn (nh) +
(t−nh)α

Γ(1+α)

[
x (nh) [1− x (nh)]− x2(nh)y(nh)

1+ax2(ns)

]
,

yn+1 (t) = yn (nh) +
(t−nh)α

Γ(1+α)

[
bx2(ns)y(ns)
1+ax2(ns)

+ cy(ns)
1+dy(ns) − ey (ns)

]
,

(8)

where, t ∈ [nh, (n+ 1)h) : For t → (n+ 1)h, system (8) is reduced to

xn+1 = xn + hα

Γ(1+α)

[
xn (1− xn)− x2

nyn
1+ax2

n

]
,

yn+1 = yn + hα

Γ(1+α)

[
bx2

nyn
1+ax2

n
+ cyn

1+dyn
− eyn

]
.

(9)

Remark 1. If the fractional parameter α tends to one in Eq. (9), then we have the forward

Euler discretization of system (2).

In the following, we will study the dynamics of the system (9).
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4. Stability of equilibria

In this section, we discuss the stability [3-5] of the discrete generalist predator–prey dynamics

model with fractional-order (9). First, we need the following lemma.

Lemma 4.1. [10, 11, 12]: Let λ1 and λ2 be the two roots of the characteristic equation of

Jacobian matrix J [E∗(x∗, y∗)], which are called eigenvalues of the fixed point (x∗, y∗), then we

have the following definitions:

(i) A fixed point E∗ is called a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically

stable.

(ii) A fixed point E∗ is called a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable.

(iii) A fixed point E∗ is called a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1).

(iv) A fixed point E∗ is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

To evaluate the equilibrium points we solve (9), then

1. The trivial state E0 = (0, 0). The point E0 always exists.

2. The second semi-trivial equilibrium point is E1 = (x1, y1) = (1, 0) when the predator is

absent in the prey, in this case (y = 0), therefore the prey is not an exhibition of predation. The

point E1 always exists.

3. The third semi-trivial equilibrium point is E2 =
(
0, b

ed(1+a)R0

)
which is exist if R0 > 0.

4. The last one is the interior equilibrium point E3 = (x∗, y∗) , where x∗ is the real root of

the equation

f(Z) = ad(ae− b)
(
Z5 − Z4

)
− [(ae− b)(d− 1)+

a(de+ c)]Z3 − d(2ae− b)Z2 + [e (d− 1) + c]Z − de = 0,

and y3 =
(1−x3)(1+ax2

3)
x3

, E3 must be having non negative component, then we have the condition

0 < x3 < 1. By the simple computation, we can see that the basic reproductive number is

R0 =
b

(1+a)(c−e) .

Now, the Jacobian matrix J (E0) for a system given in (2.2) evaluated at E0 is as follows:

J (E0) =

(
1 + hα

Γ(1+α) 0

0 1 + hαb
Γ(1+α)(1+a)R0

)
. (10)

Theorem 4.1. The trivial-equilibrium point E0 has at least two different topological types of its

all values of parameters

(i) E0 is a source if R0 < 0 or R0 >
2bhα

(1+a)Γ(1+α) ,

(ii) E0 is a saddle if 0 < h < α

√
2(1+a)Γ(1+α)R0

b , R0 > 0.

Proof. The eigenvalues corresponding to the equilibrium point E0 are λ01 = 1 + hα

Γ(1+α) > 0

and λ02 = 1 + hαb
Γ(1+α)(1+a)R0

, where α ∈ (0, 1] and h, hα

Γ(1+α) > 0. Hence, applying the stability

conditions using lemma 4.1, one can obtain the results (i), (ii).

To investigate the stability of E1, let J (E1) is the Jacobian matrix for a system given in (9)

evaluated at E1 then:

J (E1) =

(
1− hα

Γ(1+α) − hα

Γ(1+α)(1+a)

0 1 + hαb
Γ(1+α)(1+a)

(
1
R0

+ 1
) ) . (11)

�
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Theorem 4.2. The semi-trivial equilibrium point E1 has at least four different topological types

of its all values of parameters (i) E1 is a sink if 0 < h < min
{

α
√

2Γ (1 + α), α

√
−2(1+a)Γ(1+α)R0

b(R0+1)

}
,

−1 < R0 < 0,

(ii) E1 is a source if α
√

2Γ (1 + α) < h < α

√
−2(1+a)Γ(1+α)R0

b(R0+1) , R0 < −1,

(iii) E1 is a saddle if 0 < h < min
{

α
√
2Γ (1 + α), α

√
−2(1+a)Γ(1+α)R0

b(R0+1)

}
, R0 < −1 or α

√
2Γ (1 + α) <

h < α

√
−2(1+a)Γ(1+α)R0

b(R0+1) , −1 < R0 < 0,

(iv) E1 is non-hyperbolic if h = α
√

2Γ (1 + α) or h = α

√
−2(1+a)Γ(1+α)R0

b(R0+1) , R0 ̸= −1.

Proof. The eigenvalues corresponding to the equilibrium point E1 are λ11 = 1 − hα

Γ(1+α) and

λ12 = 1+ hαb
Γ(1+α)(1+a)

(
1
R0

+ 1
)
, where α ∈ (0, 1] . Hence, applying the stability conditions [3, 4]

using lemma 4.1, one can obtain the results (i)-(iv). �
Theorem 4.3. The semi-trivial equilibrium point E1 loses its stability via a flip point where

h = α
√

2Γ (1 + α) or h = α

√
−2 (1 + a) Γ (1 + α)R0

b (R0 + 1)
, R0 ̸= −1.

Proof. The flip bifurcation occurs when one of the eigenvalues of J (E1) equal to −1. This

local bifurcation entails the birth of a period 2-cycle. Hence, the system (9) may undergo a flip

bifurcation at E1 where

h = α
√

2Γ (1 + α) or h = α

√
−2 (1 + a) Γ (1 + α)R0

b (R0 + 1)
, R0 ̸= −1.

�

To investigate the stability of E2, let J (E2) is the Jacobian matrix for a system given in (9)

evaluated at E2, then:

J (E2) =

(
1 + hα

Γ(1+α) 0

0 1− bceR0(1+a)hα

Γ(1+α)[eR0(1+a)+b]2

)
. (12)

Theorem 4.4. The semi-trivial equilibrium point E2 has at least four different topological types

of its all values of parameters

(i) E2 is a source if h > α

√
2Γ(1+α)[eR0(1+a)+b]2

bceR0(1+a) , R0 > 0 or R0 < 0,

(ii) E2 is a saddle if 0 < h < α

√
Γ(1+α)[eR0(1+a)+b]2

bceR0(1+a) , R0 > 0.

Proof. The eigenvalues corresponding to the equilibrium point E2 are λ21 = 1+ hα

Γ(1+α) > 0 and

λ22 = 1 − bceR0(1+a)hα

Γ(1+α)[eR0(1+a)+b]2
, where α ∈ (0, 1] . Hence, applying the stability conditions using

lemma 4.1, one can obtain the results (i), (ii). �

For the dynamical properties of the positive equilibrium point E3 we need to state this lemma.

Lemma 4.2. [1, 18, 19, 21, 22, 26]: Let F (λ) = λ2 − Trλ + Det. Suppose that F (1) > 0, λ1

and λ2 are the two roots of F (λ) = 0. Then,

(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and Det < 1,

(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F (−1) < 0,

(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Det > 1,

(iv) λ1 = −1 and λ2 ̸= 1 if and only if F (−1) = 0 and Tr ̸= 0, 2,

(v) λ1 and λ2 are complex and |λ1| = |λ2| if and only if Tr2 − 4Det < 0 and Det = 1.
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The necessary and sufficient conditions ensuring that |λ1| < 1 and |λ2| < 1 are:[1]

(i) 1− TrJ + det J > 0,

(ii) 1 + TrJ + det J > 0,

(iii) det J < 1.

(13)

If one of the conditions (13) is not satisfied, then we have one of the following cases:[12]

1. A saddle-node (often called fold bifurcation in maps), transcritical or pitchfork bifurcation

if one of the eigenvalues = 1 and other eigenvalues (real) ̸= 1. This local bifurcation leads to

the stability switching between two different steady states;

2. a flip bifurcation if one of the eigenvalues = −1, other eigenvalues (real) ̸= −1. This local

bifurcation entails the birth of a period 2-cycle;

3. a Neimark–Sacker (secondary Hopf) bifurcation in this case we have two conjugate eigen-

value and the modulus of each of them = 1.

This local bifurcation implies the birth of an invariant curve in the phase plane. Neimark–

Sacker bifurcation is considered an equivalent to the Hopf bifurcation in continuous time and in

fact the major instrument to prove the existence of quasi-periodic orbits for the map.

Note. one can get any local bifurcation (fold, flip and Neimark–Sacker) by taking specific

parameter value such that one of the condition of each bifurcation satisfied.

The Jacobian matrix J (E3) for a system given in (9) evaluated at E3 is as follows:

J (E3) =

 1 + hα

Γ(1+α)

[
2ax3

3y3

(ax2
3+1)

2 − 1

]
− hαx2

3

Γ(1+α)(ax2
3+1)

2bhαx3y3
Γ(1+α)(ax2

3+1)

(
1− ax2

3

ax2
3+1

)
1− cdhαy3

Γ(1+α)(dy3+1)2

 , (14)

then we have

Tr = trace [J (E3)] =
Ahα

Γ (1 + α)
+ 2,

and

Det = det [J (E3)] =
hα

Γ (1 + α)

[
B

(
hα

Γ (1 + α)

)
− C

]
+ 1,

where

A =
2ax33y3(
ax23 + 1

)2 − cdy3

(dy3 + 1)2
− 1,

B =
1(

ax23 + 1
)3

(dy3 + 1)2

[
y3(a

3x63cd+ (2by23(a− 1)d2−

2y3(2b− 2ba+ a2c)d+ 2b(a− 1))x53 + 3a2x43cd+

(2by23d
2 − 2y3(ac− 2b)d+ 2b)x33 + 3ax23cd+ cd)

]
,

C =
1(

ax23 + 1
)2

(dy3 + 1)2
(x43(1 + d2y23 + d(c+ 2)y3)a

2 +

2x23(1− y3(dy3 + 1)2x3 + d2y23 + d(c+ 2)y3)a+ 1 +

d2y23 + d(c+ 2)y3),

Then, we get the following result.

Theorem 4.5. If B > 0 we have

(i) E3 is asymptotically stable (sink) if one of the following conditions holds:

(i.1) C ≥ A+ 4
√
B and 0 < h < h1.
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(i.2) C < A+ 4
√
B and 0 < h < h2.

(ii) E3 is unstable (source) if one of the following conditions holds:

(ii.1) C ≥ A+ 4
√
B and h > h3.

(ii.2) C < A+ 4
√
B and h > h2..

(iii) E3 is unstable (saddle) if C ≥ A+ 4
√
B and h1 < h < h3.

(iv) E3 is non-hyperbolic if one of the following conditions holds:

(iv.1) C ≥ A+ 4
√
B and h = h1 or h3.

(iv.2) C < A+ 4
√
B and h = h2. where

h1 =
α

√√√√Γ (1 + α)
[
C −A−

√
∆
]

2B
, h3 =

α

√√√√Γ (1 + α)
(
C −A+

√
∆
)

2B
,

h2 =
α

√
CΓ (1 + α)

B
and ∆ = (C −A)2 − 16B.

Proof. By applying lemma 4.6 and the Jury’s conditions [22], we can easily get the stability

conditions (i)-(iv). �

Theorem 4.6. If B > 0 then E3 loses its stability via

(i) flip bifurcation when C ≥ A+ 4
√
B and h = h1 or h = h3.

(ii) Hopf bifurcation when C < A+ 4
√
B and h = h2.

Proof. [14] introduced a Thorough study of the main types of bifurcations for 2-D maps. In line

with this study, we can see that Ei undergoes flip bifurcation when a single eigenvalue becomes

equal to −1 (i.e. 1− Tr+Det = 0 ). Therefore E3 can lose its stability through flip bifurcation

when h = h1 or h = h3. A flip bifurcation of E3 may occur if the parameters vary in the small

neighborhood of the following sets

S1 =
{
(h, α, a, b, c, d, e) : C ≥ A+ 4

√
B and h = h1

}
,

or

S2 =
{
(h, α, a, b, c, d, e) : C ≥ A+ 4

√
B and h = h3

}
.

When the Jacobian has pair of complex conjugate eigenvalues of modulus 1, we get the Hopf

bifurcation (i.e. Det = 1), then E3 can lose its stability through Hopf bifurcation when h = h2
and then it also implies that all the parameters locate and vary in the small neighborhood of

the following set:

S3 =
{
(h, α, a, b, c, d, e) : C < A+ 4

√
B and h = h2

}
.

�

It can be concluded from the statements of Theorem 4.7 that the positive equilibrium is locally

asymptotically stable if and only if the fractional parameter h ∈ (0, h∗) where h∗ = h1 or h2 or

h3 (according C ≥ A + 4
√
B or C < A + 4

√
B). As increases above the critical value h∗, the

positive equilibrium is unstable, and a limit cycle is expected to appear in the proximity of E3,

due to the Flip bifurcation phenomenon.

5. Numerical simulations

In this section, we give the phase portraits, the attractor of parameter h and bifurcation

diagrams to confirm the above theoretical analysis and to obtain more dynamical behaviors

of generalist predator–prey dynamics model (9). Since most of the fractional-order differential
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equations do not have exact analytic solutions, approximation and numerical techniques must

be used.

From the numerical results Figures follows, it is clear that the approximate solutions depend

on the fractional parameters h, α see fig. (1). The approximate solutions xn and yn are displayed

in all figures below.

First, we will study the phase portrait of the model (9) in figure (1), we use some documented

data for some parameters like a = 100, b = 80, c = 1, d = 0.9 and e = 0.5, other parameter

will be (a) h = 0.12, α = 0.9 and (x1, y1) = (0.1, 35) and (0.2, 35) , (b) h = 0.05, α = 0.9 and

(x1, y1) = (0.1, 35) and (0.2, 35) , (c) h = 0.17, α = 0.9 and (x1, y1) = (0.1, 35) and (0.2, 35) , (d)

h = 0.05, α = 0.7 and (x1, y1) = (0.11, 17.9) , (e) h = 0.05, α = 1.9 and (x1, y1) = (0.11, 17.9) ,

(f) h = 0.05, α = 2.6 and (x1, y1) = (0.11, 17.9) , .

Fig. 1 depicts the phase portraits of model (9) according to the chosen parameter values and

for various values of the fractional-order parameters h and α. We can see that, whenever fixed

the value of α and increased the value of h then E3 moves from the stabilized to the chaotic

band. Fig. (1c) depict the phase portrait for model (9) which exist before a flip bifurcation for

h < h∗ and the phase portrait which exist after a flip for h > h∗.

By computing, we have E2 = (0.11097, 17.877) , C ≈ 0.074, A + 4
√
B ≈ 2.3 =⇒ C <

A+ 4
√
Band we can get the critical value of flip bifurcation for model (9) s. t.

In figs. 1(a)-1(c) we have h∗ = h2 = 0.1684935728.

In figs. 1(d)-1(f) we have h∗ = h2 = (d) 0.0934, (e) 0.603 and (f) 0.908 according to α. Thus,

according to the theorem (4.7), the conditions of flip bifurcation are achieved near the positive

equilibrium E3, flip bifurcation diagrams for the parameter h is plotted in Fig. (2).

In figure (2) we use some documented data for some parameters like α = 0.95, a = 100,

b = 40, c = 1, d = 0.9, e = 0.5 and (x1, y1) = (0.9, 9.5), other parameter will be (a) h = 2.5, (b)

h = 2.8, (c) h = 3.25, (d) h = 3.32, (e) h = 3.34, (f) h = 3.35 and (g) h = 2.5 : 3.6.

Fig. 2(a) describes the stable equilibrium of the model (9) according to the values of the

parameters set out above, Period-2,4,8,16 orbits appear in Fig. (2b-2e). From Fig. (2f,2g)

we can see that reducing and increasing h cause the disappearance of 2n-periodic orbits and

increasing the chaotic attractors and the results of numerical simulation verify our theoretical

analysis.

In figure (3) we use some documented data for some parameters like h = 2.6, α = 0.75 : 2.1,

a = 100, b = 40, c = 1, d = 0.9, e = 0.5 and (x1, y1) = (0.9, 9.5) .

In figure (4) we use some documented data for some parameters like h = 0.5, α = 0.95,

a = 42 : 65, b = 40, c = 1, d = 0.9, e = 0.5 and (x1, y1) = (0.9, 9.5) .

In figure (5) we use some documented data for some parameters like h = 0.5, α = 0.95,

a = 100, b = 47.6 : 84.5, c = 1, d = 0.9, e = 0.5 and (x1, y1) = (0.9, 9.5) .

In figure (6) we use some documented data for some parameters like h = 0.5, α = 0.95,

a = 100, b = 40, c = 2.87 : 2.97, d = 0.9, e = 0.5 and (x1, y1) = (0.9, 9.5) .

In figure (7) we use some documented data for some parameters like h = 0.5, α = 0.95,

a = 100, b = 40, c = 1, d = 0.27 : 0.29, e = 0.5 and (x1, y1) = (0.9, 9.5) .

In figure (8) we use some documented data for some parameters like h = 0.5, α = 0.95,

a = 100, b = 40, c = 1, d = 0.9, e = 0.416 : 428 and (x1, y1) = (0.9, 9.5) .

Figures (1) - (8) prove that each parameter of (9) is the bifurcation parameter model, which

means that it may be any slight parameter change can effect in the stability of an equilibrium

point.
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Figure 1. Phase portraits of model (3.7).
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Figure 2.

Figure 3.
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Figure 4.

Figure 5.

Figure 6.
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Figure 7.

Figure 8.

6. Conclusions

In this paper we have introduced discrete generalist predator–prey dynamics model (9) with

fractional-order. We have investigated the existence of the free and positive equilibriums. We

have also studied the stability of the four equilibrium states of model (9). The flip and Hopf

bifurcations are also investigated for the model (9) for some parameters like a, b, c, d and e the

fractional-order parameters h and α. Also, a flip bifurcation process with respect to the fractional

parameter h has been done to show the transformation of a classical model into a fractional one

makes it very sensitive to the order of differentiation α and the fractional parameter h (see

fig. (1)). It has been found that fractional-order parameters h and have obvious effect on the

stability of the model (9). It has also been shown that the combining between the fractional and

discrete dynamical models exhibit these models much richer dynamics and give more control on

the model (9). Numerical simulations have been used to show the chaotic attractors of model

(9).

Moreover, we noticed all the parameters affect the occurrence of flip bifurcation and chaos

(see figs. (2), (3)), Hopf bifurcation in figs. (4)-(8).



M. EL-SHAHED et al: STABILITY ANALYSIS IN A DISCRETE-TIME PREDATOR-PREY... 95

References

[1] Agiza, H.N., Elabbasy, E.M., El-Metwally, H., Elsadany, A.A., (2009), Chaotic dynamics of a discrete prey-

predator model with Holling type II. Nonlinear Analysis: Real World Applications, 10 pp.116-129.

[2] Ahmad, W.M., Sprott, J.C., (2003), Chaos in fractional-order autonomous nonlinear systems, Chaos, Solitons

and Fractals, 16, pp.339–351.

[3] Aliev, F.A., Larin, V.B., (1980), Numerical-solution of discrete algebraic Riccati equation, Izvestiya Akademii

Nauk Azerbaidzhanskoi SSR Seriya Fiziko-Tekhnicheskikh I Matematicheskikh Nauk, 5, pp.94-104.

[4] Aliev, F.A., Bordiug, B.A., Larin, V.B., (1987), A spectral method for solving Riccati matrix algebraic

equations, Doklady Akademii Nauk SSSR, 292(4), pp.783-788.

[5] Aliev, F.A., Larin, V.B., (2014), On the algorithms for solving discrete periodic Riccati equation, Applied

and Computational Mathematics, 13 (1), pp.46-54.

[6] Babakhani A., (2015), On the existence of solutions in coupled system of non-linear fractional integro-

differential equations on the half line, TWMS J. Pure Appl. Math., 6(1), pp.48-58.

[7] Barbosa, R.S., Machado, J., Vinagre, B.M., Calderon, A.J., (2007), Analysis of the Van der Pol oscillator

containing derivatives of fractional order, J. Vib. Control, 13 , pp.1291–1301.

[8] Caputo, M., (1967), Linear models of dissipation whose Q is almost frequency independent: II Geophys. J.

R. Astron. Soc., 13, pp.529–539.

[9] Duan,J.S., (2013), The periodic solution of fractional oscillation equation with periodic input, Advances in

Mathematical Physics, Article ID 869484, pp.1-6.

[10] El-Sayed, A.M.A., Salman, S.M., (2013), On a discretization process of fractional order Riccati differential

equation, J. Fract. Calc. Appl., 4 , pp.251-259.

[11] El-Sayed, A.M.A., Salman, S.M., (2013), Fractional-order Chua’s system: discretization, bifurcation and

chaos, Adv. in Diff. Eqs. Springer, pp.1-13.

[12] Elsadany, A.A., Matouk, A.E., (2015), Dynamical behaviors of fractional-order Lotka-Voltera predator-prey

model and its discretization, J. Appl. Math. Comput., 49, pp.269-283.

[13] El-Shahed, M., Ahmed, A.M., Abdelstar, I.M.E., (2017), Dynamics of a Plant-Herbivore Model with Frac-

tional Order, Progr. Fract. Differ. Appl., 3(1), pp.59-67.

[14] Elaydi, S., (2008), Discrete Chaos with Applications in Science and Engineering. 2nd edn. Chapman and

Hall/CRC, Boca Raton.

[15] Erbach, A., Lutscher, F., Seo, G., (2013), Bistability and limit cycles in generalist predator-prey dynamics,

Ecological Complexity, 14, pp.48–55.

[16] Ghaziani, R.K., Alidoustia, J., Bayati Eshkaftakib, A., (2016), Stability and dynamics of a fractional order

Leslie–Gower prey–predator model, Applied Mathematical Modelling, 40, pp.2075–2086.

[17] Hegazi, A.S., Ahmed, E., Matouk, A.E., (2011), The effect of fractional order on synchronization of two

fractional order chaotic and hyperchaotic systems, Journal of Fractional Calculus and Applications, 1, pp.1-

15.

[18] Z. Hu, Z. Teng, L. Zhang, (2014), Stability and bifurcation in a discrete SIR epidemic model, Math. Comput.

in Simul, 97, pp.80-93.

[19] Hu, Z., Teng, Z., Zhang, L., (2011), Stability and bifurcation analysis of a discrete predator–prey model with

non-monotonic functional response, Nonlinear Analysis: Real World Applications, 12, pp.2356–2377.

[20] D. Hu, H. Cao, (2015), Bifurcation and chaos in a discrete-time predator–prey system of Holling and Leslie

type, Commun Nonlinear Sci Numer Simulat, 22, pp.702–715.

[21] Huang, J., Ruan, S., Song, J., (2014), Bifurcations in a predator–prey system of Leslie type with generalized

Holling type III functional response, Journal of Differential Equations, 257, pp.1721–1752.

[22] Jury, E.I., (1974), Inner and stability of dynamic systems, New York: Wiley.

[23] Matouk, A.E., (2016), Chaos synchronization of a fractional-order modified Van der Pol-Duffing system via

new linear control, backstepping control and Takagi-Sugeno fuzzy approaches, Complexity, 21, pp.116-124.

[24] Podlubny, I., (1999) Fractional Differential Equations, Academic Press, New York, NY, USA.

[25] Xu, S., (2014), Dynamics of a general prey–predator model with prey-stage structure and diffusive effects,

Computers & Mathematics with Applications, 68, pp.405–423.

[26] Zhou, Y., Xiao, D., Li, Y., (2007), Bifurcations of an epidemic model with non-monotonic incidence rate of

saturated mass action, Chaos, Solitons and Fractals, 32, pp.1903–1915.



96 TWMS J. PURE APPL. MATH., V.8, N.1, 2017

Moustafa El-shahed is a Professor of mathe-

matics at Qassim University, Saudi Arabia. El-

shahed’s academic background started in 1986

when he received his Bachelor of Science degree,

from Ain Shams University, Egypt. In 1997 he

earned his Master of Science degree in pure math-

ematics from the same university. In 2000, he

received his Doctor of Science degree in mathe-

matics from Ain Shams University, Egypt.

His research interests focus on differential equations, biomathematics, mathematical modeling, fractional cal-

culus.

A. M. Ahmed is a Professor of Pure Mathemat-

ics in Department of Mathematics, Faculty of Sci-

ence, Al-Azhar University, Cairo, Egypt. A. M.

Ahmed, obtained his B.Sc. (1997), M.Sc. (2000)

and Ph. D. (2004) from Al-Azhar University. He

obtained the rank Associate Professor from Al-

Azhar University in 2012 and the rank Professor

from Al-Azhar University in January 2017. His

research interests fokus on differential equations,

dynamical systems and its applications.

Ibrahim M. E. Abdelstar is an Assistant Lec-

turer at Faculty of Business & Economics, Qas-

sim University Saudi Arabia. Received the Mas-

ter degree in pure mathematics at Faculty of sci-

ence, Al-Azhar University. His research interests

are in the areas of applied mathematics, economic

dynamics, mathematical biology, chaos, nonlinear

dynamical systems and fractional calculus.


